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DECOMPOSITION OF A WIND FIELD ON THE SPHERE

by

Clifford H. Dey and John A. Brown, Jr. 
National Meteorological Center 

National Weather Service, NOAA, Washington, D.C.

ABSTRACT

When decomposing a horizontal wind field into its 
rotational and divergent components, care must be 
taken to assure compensating truncation errors in 
order that the resulting wind components can be used 
to accurately reconstruct the original field. An 
example is presented of a finite difference system 
with second-order accuracy for a regular spherical 
grid which yields results sufficiently accurate for 
use in initialization procedures for a primitive 
equation forecast model used at the National 
Meteorological Center (NMC).

1. Introduction

This paper is not presented to document a new idea in finite 
differencing, but rather to bring attention to a problem which is too 
often overlooked. When decomposing an atmospheric horizontal wind 
field at a particular vertical level into its rotational and divergent 
components, one should be careful to maintain a finite difference system 
which is internally consistent. By this we mean that the finite 
difference forms of the wind components and the vorticity and divergence 
should be established consistently from the stream function and velocity 
potential, both within the fluid and at the lateral boundaries.

In addressing the global forecast problem, personnel at the NMC have 
developed a grid point 8-layer global primitive equation model (Stackpole, 
Vanderman, and Shuman, 1973), hereafter referred to as the Global Model. 
Recent testing of this model has revealed the presence of large amplitude 
nonmeteorological oscillations in the forecast. In an attempt to reduce 
the portion of the noise due to initial mass-wind imbalances, it was 
necessary to develop a finite difference method for separating the analyzed 
wind (Flattery 1970) into its rotational and divergent components. The 
method presented here is an internally consistent finite difference system 
of second-order accuracy for a regular latitude-longitude grid. However, 
the general procedures of this method should be applicable to other systems 
as well.



In section 2, the accuracies of two finite difference systems are 
compared for a one-dimensional Cartesian grid. The details of the finite 
difference system for the spherical grid are presented in section 3. The 
lateral boundary conditions at the poles are considered in section 4.
The numerical method for solving the problem is discussed in section 5. 
Finally, the results of testing the proposed technique on a real data case 
are presented in section 6.

2. Staggered and Nonstaggered Finite Difference Formulations

In one dimension, the relative vorticity (£) and the wind (v) can be 
written as

9v _ 9 
9x 9x2 (1)

(2)

where ip represents the stream function. Consider the problem where the 
analyzed wind field (v) is given. Equation (1) will be used to obtain \p 
and Equation (2) to calculate the reconstructed wind field v. The finite 
difference forms of (1) and (2) should be consistent for the reconstructed 
wind field v to be equal to the original wind field v.

The first finite difference system we consider is one in which the 
vorticity £ applies at the grid points where the analyzed winds are located. 
This will be termed the nonstaggered finite difference system. In this 
system, the finite difference forms of (1) and (2) are

— xip = Vrxx X (3)

V T-X (4)

in which the notations

( L = r*[< (>,]
(5)

< )X-F K >i+i+ « >il
have been used. Here, Ax is the spatial grid distance. Thus at point i, 
Equations (3) and (4) are, respectively,

(S)2[*i+1+ *i-l’ 2*i] = 2L [Vi+l“ Vi-1] (6)
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and
1V. = [ll> . , , - it . 1 ai 2Ax L 1+1 i"1 (7)

Assume solutions for the analyzed wind and the stream function are given 
by

•a ■v.j_ = A sin [——] (8)

i ti r2Tri,il>. = B cos ---i L (9)

where LAx is the wavelength. Substituting (8) and (9) into (6) yields

. AAx r2iri,ib. = --- cos r——1yi 2 L L 1

sin [21]

COS [—] - 1
Tj

(10)

Substituting this into (7) finally gives

2v. = v.cos^I—I . l l lL (ID

Equation (11) shows that the reconstructed wind field v^ will underestimate 
the analyzed wind field v^ due to noncompensating truncation errors.

A finite difference system containing noncompensating truncation errors was 
used by Washington and Baumhefner (1974) in their search for a suitable 
global initialization scheme. After setting the vertically integrated 
mass-divergence to zero everywhere, their reconstructed wind fields had the 
same patterns as the original fields but the magnitudes of the reconstructed 
fields were up to 13 m sec-1 smaller than those of the original. The 
largest decreases were in the vicinity of the jet maxima.

Let us now consider the second finite difference formulation in which the 
vorticity applies between the grid points where the winds are located.
This will be referred to as the staggered system. In this case, the 
differential equations (1) and (2) are approximated by

F = v = ib (12)^ x rxx
and

v = \px . (13)
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When v in (13) is substituted for v in (12), a perfect equality is 
obtained. Thus, truncation error will be perfectly compensated in the 
staggered system.

A staggered finite difference system for decomposing global horizontal 
wind analyses is presented in the next section.

3. A Staggered Finite Difference Formulation of the Spherical Problem

The decomposition of a horizontal wind field into its rotational and 
divergent components is accomplished by solving the equations

V • Vip = K (14)

and

^ = D, (15)

in which £ is the relative vorticity, D is the divergence, ip is the stream 
function, x is the velocity potential, and ^ is the horizontal gradient 
operator. The reconstruction of a wind field from such components is 
accomplished via Helmholtz' theorem

$ = t x tip + (16)

where ^ is the reconstructed wind field.

In spherical horizontal coordinates (<)> = latitude, X = longitude) , 
equations (14) and (15) can be written as, respectively,

3_r__1_
3X cos<f> 3X

+ -—[cOS(J> -^i-] 
3<f> 3<()

’ fx[rvl - f*fru cos*]
(17)

3_r^_ lX.13XLcos<j> 3XJ
+ f*!

= —[ru] + —[rv cos<J>] 3X 3<f>L

(18)

In these equations, u and v are winds from the west and south, respectively, 
r is the radius of the earth,

— — < 4> < — , and 0 < X < 2tt .2 ' 2
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Both sides of (17) and (18) have been multiplied by [r2cos*] . Likewise, 
the wind components defined by (16) can be written in spherical coordinates 
as

1 9^ 1 9x
r 9* r cos<|> 9X '

(19)

v = 1 3i|> x 1 9X
r cos<() 9X r 9c}>

(20)

The staggered finite difference formulations of equations (17) through (20) 
are:

-X - - - - - - - - - - - - - - A-4 + [comT] = r ^ " r[u cos*] , 
cos* X x f *

(21)

[—— x*] + [cos* x*] = r u? + rtv cos^
*cos* /VXJX L_ -'r ^*JA "X *

(22)

1 T-Xu -------- * + ---------
r * r cos

1 -* 
—* *X ' (23)

V =
—X

r cos* + r x* (24)

The grid arrangement and location of variables is shown in Figure 1. The 
finite differences symbolized in equations (21)-(24) have the following 
meanings:

[( )X]i+J5,j+Js * 2AX[( >1+1,j+1 ( } i, j+1 + ( )i+l, j ( >i J, ■*- t (25)
 J

[( Vi+l^j+Jj 2A* )i+l,j+l " ( )i+l,3 + ( )i»3+l ( )H ,], (26) 
r J

[-L(Tt]
cos* X x

2 ^ cos* . i ^ ^i+1, j+1 2( ^i,j+1 + * ^i-1,j+1
4 (AX) z wo»j+Js

1,3 + < >1+1,1 - 21 >1.1 + <

+ cos^i/1 >1+1.3 " 2< h,j + 1

+ < ’i+1,1-1 - 21 >1,1-1 + < >1-1,i-l” ' (27)
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1—X[rcos<M = 4 (A<j)) ^ {cOS*j+% t< >i+l,j+l + 2( >ir j+1

+ ( ^ i-1, j+1 ~ ( 2( (

OOS*j-5sC ( )i+l# j + 2( }i,j + ( )i-l,;

( >1+1,j-i - 2( >i,j-i - ( (28)

Here, A<j) = AX, the grid point separation distance in radians. Equations 
(21) and (22) are solved by the accelerated Liebmann relaxation scheme, 
and a wind field can be reconstructed via equations (23) and (24) . The 
relations in this section are valid everywhere except at the poles. There 
suitable boundary conditions must be used.

4. Boundary Conditions at the Poles

At the North and South Poles, the grid arrangement is different from 
that in the rest of the grid. This is shown in Figure 2 for the North 
Pole. An assumption about the wind at the poles was made in order to 
obtain finite difference representations of equations (14) and (15) at 
point 5 in Figure 2. The assumption is identified and the resulting 
finite difference equations are presented in this section.

Let circulation (C) be defined as

C = j> V . ds (29)

and vorticity by

£ = [C/AA] = [1/AA] j> % • ds ' (30)

where AA is the area enclosed by the circulation and I is a unit vector 
tangent to the line enclosing AA. In a similar manner, let divergence be 
defined by

D = [1/AA] ^ • d3 , (31)

in which S is a unit outward vector normal to the line enclosing AA.
The convention used here is that positive E, is counterclockwise circulation 
and positive D is net outflow. Equations (30) and (31) are approximated 
for the area bounded by points a, b, and c in Figure 2 as follows:

« = AA {hl [-va-vbi.] + h2 + h3[!£^d]} (32)
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(33)D = ^{h1[^aT%] +h2[^b^£] +h3[^d]}.
2 2 z

The quantities hj, h2, h3, and AA are given by

hj = h3 = rA<f> ,

h2 = rAX cos(^c ^ (34)

AA = r2AX[l - sind> ] .
be

It will be useful to express AA as

AA = r2AXAd> cos<j> 0 (35)

For this to be true,

A<J> cos(J>0 = 1 - sin<j>bc , 

so that <j>0 is defined by
1 - sin<f>b

*o ■ 003-1 [ ^----- 1 • (36)

Substitution of (34) and (35) into (32) and (33) changes the latter into, 
respectively,

K = rzr cos<f)0 2AX{^fr[vd-va] + r> , (37)

jr
D = —----------- {------ [ud-ual + D"}

r2cos<f>n 2AX
(38)

in which E,' and D' are given by

r r cos<phc
«' - ST ‘W + 24* 'W (39)

n" = —— [n —VL 1 + r COS(^bc T-v.-v 1
2AX ‘c V b cJ (40)

The winds at points b and c are defined in terms of \p and x just as 
in the previous section. The boundary condition lies in the specification

7



of the winds at the pole (point a). The NMC Global Model carries one 
vector wind at the pole and resolves that wind into u and v components 
at each longitude where gridpoints lie. In practice, therefore, and 
vd do not differ greatly from ua and va respectively. Because of this, 
we assumed

u = u, and v = v. . (41).ad ad

This reduces (37) and (38) to

£ = £Vr2cos<f>0 (42)

D = D'/r2cos<()0 (43)

Substitution of the finite difference representations for u and v at 
points b and c given in the previous section transforms (39) and (40) 
into (after multiplying through by r2cos<J>0)

V = - R(X) , (44)

D' = tf2X + Rty), (45)

where

$2 = J_ {
2AX 2AX cos<j>b(

[( )4 - 2( )5 + ( )6 + ( )7

1 cos<f>h
- 2< >» + ' 1 >- 

- 2( )5 - ( )6+ ( )7 + 2( )8 + ( )g]} , (46)

R( ) =
4Acf>AX

[- 2( )L + 2 ( ) 1 . (47)

5. Solution of the Finite Difference Equations

The complete system consists of equations (21) and (22) at all 
interior gridpoints, equations (44) and (45) at the row of gridpoints 
nearest the North Pole (87.5°N for a 5° latitude-longitude grid), and 
equations similar to (44) and (45) at the row of gridpoints nearest the 
South Pole (87.5°S for a 5° latitude-longitude grid). The wind field

8



was reconstructed from and x fields via equations (23) and (24) for 
all gridpoints except at the poles. There, the averaging procedure 
used in the Global Model was invoked.

The consequences of equations (44) and (45) are that the solution 
for jp depends on the values of x at 87.5°N and S latitude, and the 
solution for x depends on the values of \p at 87.5°N and S latitude .
(again for a 5° grid). Thus, a special procedure was necessary to solve 
for ip and x-

The scheme used was to make an initial guess of R(x) = 0 at the 
northern and southernmost rows of gridpoints and solve for i|i by relaxation. 
Having ip, R(\p) was computed at the row of gridpoints nearest each pole 
and a solution for x was obtained by relaxation. Although this procedure 
could be iterated, it was found that additional cycles added little to 
the accuracy of the reconstructed winds.

6. Accuracy of the Solution

In order to test the accuracy of the method just described, a simple 
numerical experiment was devised. First, an analyzed wind field was 
produced by the global spectral analysis technique of Flattery (1970) on 
a 5° latitude-longitude grid. Then this analyzed wind field was 
decomposed into a stream function and a velocity potential, from which 
a second wind field was constructed via Helmholtz' Theorem. The quality 
of the solution method was judged on the basis of root-mean-square (RMS) 
differences between the original and reconstructed wind fields.

The results of the experiment, presented in Table 1, indicate that 
the reconstructed wind field is nearly identical to the original, the 
RMS differences being of the order of 0.01 m sec-'. The effect of the 
boundary condition can be seen in the tendency for the RMS differences 
to increase towards the poles. However, even there the largest individual 
differences were only 0.05 m sec”^. On the basis of these results, the 
solution method is considered to be adequate for use in initialization 
procedures for the Global Model.

7. Summary and Conclusions

The necessity of using an internally consistent finite difference 
formulation to decompose a horizontal wind field into its rotational and 
divergent components in order that these components can be used to 
accurately reconstruct the original field is demonstrated. Such an 
internally consistent finite difference system is developed to decompose 
a global wind field into a stream function and a velocity potential and 
reconstruct a global wind field from the components. The method requires 
a boundary condition at the poles. The procedure is found to be

9



Table 1. RMS[Original (u,v,|v| - Reconstructed (u,v,|v|)] (in m sec-1)

RMS u RMS v RMS |v| 
Latitude Difference Difference Difference

VD O o 25 0.0011 0.0011 0.0008
85°N 0.0245 0.0233 0.0245
80°N 0.0177 0.0183 0.0206
75°N 0.0162 0.0158 0.0172
70°N 0.0141 0.0140 0.0127
65°N 0.0121 0.0124 0.0130
60°N 0.0107 0.0112 0.0105
55°N 0.0095 0.0100 0.0093
50°N 0.0084 0.0092 0.0092
45°N 0.0077 0.0084 0.0066
40°N 0.0071 0.0079 0.0070
35°N 0.0065 0.0074 0.0070
30°N 0.0061 0.0070 0.0061
25°N 0.0057 0.0067 0.0054
20°N 0.0054 0.0066 0.0054
15°N 0.0052 0.0064 0.0055
10°N 0.0049 0.0065 0.0059
5°N 0.0048 0.0064 0.0047
0° 0.0047 0.0066 0.0056
5°S 0.0047 0.0067 0.0054

10°S 0.0047 0.0069 0.0061
15°S 0.0049 0.0070 0.0053
20°S 0.0049 0.0073 0.0057
25°S 0.0051 0.0075 0.0057
30°S 0.0051 0.0079 0.0057
35°S 0.0056 0.0081 0.0061
40°S 0.0057 0.0085 0.0062
45°S 0.0062 0.0088 0.0069
50°S 0.0067 0.0094 0.0072
55°S 0.0077 0.0100 0.0081
60°S 0.0088 0.0109 0.0086
65°S 0.0103 0.0118 0.0103
70°S 0.0123 0.0133 0.0121
75°S 0.0169 0.0151 0.0150
80 °S 0.0222 0.0183 0.0198
85°S 0.0242 0.0198 0.0211
90°S 0.0003 0.0003 0.0002

RMS u Difference
(whole grid)
0.0106

RMS v Difference
(whole grid)

0.0109

RMS |v| Difference
(whole grid)
0.0105
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sufficiently accurate for use in initialization experiments with the 
NMC eight-layer global model. However, it should be possible to use 
this solution method in conjunction with other numerical models as well 
by following the general procedure outlined here and tailoring the 
details to the model in question.
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